A Tractable First-Order Probabilistic Logic

نویسندگان

  • Pedro M. Domingos
  • William Austin Webb
چکیده

Tractable subsets of first-order logic are a central topic in AI research. Several of these formalisms have been used as the basis for first-order probabilistic languages. However, these are intractable, losing the original motivation. Here we propose the first non-trivially tractable first-order probabilistic language. It is a subset of Markov logic, and uses probabilistic class and part hierarchies to control complexity. We call it TML (Tractable Markov Logic). We show that TML knowledge bases allow for efficient inference even when the corresponding graphical models have very high treewidth. We also show how probabilistic inheritance, default reasoning, and other inference patterns can be carried out in TML. TML opens up the prospect of efficient large-scale firstorder probabilistic inference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Markov Logic

Tractable subsets of first-order logic are a central topic in AI research. Several of these formalisms have been used as the basis for firstorder probabilistic languages. However, these are intractable, losing the original motivation. Here we propose the first non-trivially tractable first-order probabilistic language. It is a subset of Markov logic, and uses probabilistic class and part hierar...

متن کامل

Tractable Probabilistic Knowledge Bases with Existence Uncertainty

A central goal of AI is to reason efficiently in domains that are both complex and uncertain. Most attempts toward this end add probability to a tractable subset of first-order logic, but this results in intractable inference. To address this, Domingos and Webb (2012) introduced tractable Markov logic (TML), the first tractable first-order probabilistic representation. Despite its surprising ex...

متن کامل

Learning and Inference in Tractable Probabilistic Knowledge Bases

Building efficient large-scale knowledge bases (KBs) is a longstanding goal of AI. KBs need to be first-order to be sufficiently expressive, and probabilistic to handle uncertainty, but these lead to intractable inference. Recently, tractable Markov logic (TML) was proposed as a nontrivial tractable first-order probabilistic representation. This paper describes the first inference and learning ...

متن کامل

Lifted Inference Seen from the Other Side : The Tractable Features

Lifted Inference algorithms for representations that combine first-order logic and graphical models have been the focus of much recent research. All lifted algorithms developed to date are based on the same underlying idea: take a standard probabilistic inference algorithm (e.g., variable elimination, belief propagation etc.) and improve its efficiency by exploiting repeated structure in the fi...

متن کامل

Liftability of Probabilistic Inference: Upper and Lower Bounds

We introduce a general framework for defining classes of probabilistic-logic models and associated classes of inference problems. Within this framework we investigate the complexity of inference in terms of the size of logical variable domains, query and evidence, corresponding to different notions of liftability. Surveying existing and introducing new results, we present an initial complexity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012